Information Visualization with Self-Organizing Maps

نویسنده

  • Jing Li
چکیده

The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that projects highdimensional data onto a two-dimensional map. The projection preserves the topology of the data so that similar data items will be mapped to nearby locations on the map. Despite the popular use of the algorithm for clustering and information visualisation, a system has been lacking that combines the fast execution of the algorithm with powerful visualisation of the maps and effective tools for their interactive analysis. Powerful methods for interactive exploration and search from collections of free-form textual documents are needed to manage the ever-increasing flood of digital information. In this article we present a method, SOM, for automatic organization of full-text document collections using the self-organizing map (SOM) algorithm. The document collection is ordered onto a map in an unsupervised manner utilizing statistical information of short word contexts. The resulting ordered map where similar documents lie near each other thus presents a general view of the document space. With the aid of a suitable (SVG) interface, documents in interesting areas of the map can be browsed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Clustering and Visualization with Latent Dirichlet Allocation and Self-Organizing Maps

Clustering and visualization of large text document collections aids in browsing, navigation, and information retrieval. We present a document clustering and visualization method based on Latent Dirichlet Allocation and self-organizing maps (LDA-SOM). LDA-SOM clusters documents based on topical content and renders clusters in an intuitive twodimensional format. Document topics are inferred usin...

متن کامل

Organizing Multimedia Information with Maps

Semantic multimedia organization is an open challenge. In this chapter, we present an innovative way of automatically organizing multimedia information to facilitate content-based browsing. It is based on self-organizing maps. The visualization capabilities of the self-organizing map provide an intuitive way of representing the distribution of data as well as the object similarities. The main i...

متن کامل

EM Algorithms for Self-Organizing Maps

Self-organizing maps are popular algorithms for unsupervised learning and data visualization. Exploiting the link between vector quantization and mixture modeling, we derive EM algorithms for self-organizing maps with and without missing values. We compare self-organizing maps with the elastic-net approach and explain why the former is better suited for the visualization of high-dimensional dat...

متن کامل

MailSOM - Visual Exploration of Electronic Mail Archives Using Self-Organizing Maps

Systems for handling large electronic mail archives can leverage Information Visualization techniques to facilitate explorative data analysis. In this paper, we propose to use Self-Organizing Maps as an appropriate tool to manage large volumes of email in personal email archives.

متن کامل

Topographic Maps Based on Kohonen Self Organizing Maps An Empirical Approach

Two-dimensional maps are a valuable interface element for the visualization of information retrieval results or other large sets of objects. Various methods exist for the creation of these maps. This article describes a comparative evaluation of topographic maps based on “Kohonen Self Organizing Maps” (SOM). These results show that the mapping method has to be chosen very carefully and differen...

متن کامل

Visualization of Object Oriented Software Measures using Self-Organizing Maps

Role of self-organizing maps in visualization and analysis of software measures is presented and discussed in this paper. We reveal how self-organizing maps can create a user-friendly and interactive visualization tool that helps software designer to inspect various alternatives and get a thorough insight into the structure of the clusters of the software modules and related metrics. We show ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005